Category Archives

18 Articles

Posted by Anna Brandt on

Region grouping

Seit dem Versionsupdate 1.14.0 gibt es eine neue Funktion zur Konfiguration der Layout Analyse. Es geht dabei um die Anordnung der Text Regionen, genannt ‚Region grouping‘. Dabei könnt ihr nun einstellen ob diese um „Bündel“ von Baselines gezogen werden sollen oder ob alle Lines in einer einzigen TR sein sollen.

Bei der zuerst genannten Einstellung kann es schnell passieren, dass am Rand des Images oder auch mittendrin viele kleine TRs auftauchen, auch wenn es eigentlich nur einen Textblock gibt. Dieses Problem kann man in einem weiteren Schritt mit dem Remove small Textregions lösen.

Dagegen sind bei der Einstellung von nur einer Textregion, wirklich alle Baselines in dieser Textregion, auch die, die sonst als Marginalien am Rande stehen und sogar senkrechte BL. Solange die Einstellung ‚Heterogeneous‘ bei ‚Text orientation‘ gewählt ist, erkennt die Layout Analyse auch die senkrechten Linien in derselben TR mit den waagerechten. Es ist zu erkennen, dass die LA normalerweise mehrere TR erkennen würde. Die reading order für die Zeilen wird nämlich weiterhin eingeteilt, als befänden sie sich in eigenen Textregionen. Der Hauptparagraph ist meistens TR 1, deshalb fängt auch die RO dort an. Die anderen Baselines werden hinten angestellt, auch wenn sie seitlich neben dem Haupttext stehen und damit eigentlich mittendrin eingeordnet werden könnten.

Welche Einstellung für euch besser ist, müsst ihr ausprobieren. Bei Seiten, die nur einen Textblock haben, ist die zweite Einstellung natürlich von Vorteil, weil die ganzen kleinen TR nicht auftauchen. Es könnte auch sein, dass man innerhalb eines Dokuments verschiedene Einstellung wählen muss.

Posted by Dirk Alvermann on

Automatisches Verbinden zu kurzer Zeilen

Diese Tool ist – wie „Remove small text lines”- mit der Verion 1.12.0 von Transkribus ausgeliefert worden. Die Idee dahinter ist vielversprechend.

Vielleicht hattet ihr schon einmal Probleme mit „zerrissenen“ Zeilen bei der automatischen Line detection (Citlab Advanced Layout Analyse). Wir haben in einem früheren Beitrag darüber berichtet, wie nervig dieses Problem sein kann.

Die Erwartungen an solch ein Tool waren daher bei uns natürlich hoch. Nach kurzer Zeit haben wir aber erkannt, dass seine Verwendung etwas Übung braucht und dass es nicht problemlos überall eingesetzt werden kann.

Hier zeigen wir ein einfaches Beispiel:

Auf der Seite wurden von der Citlab Advanced Layout Analyse fünf „überflüssige“ Textregionen erkannt und ebenso viele „zerrissene“ Baselines. In einem solchen Fall solltet ihr zuerst mit „remove small text regions“ die überflüssigen Textregionen entfernen und erst dann das automatische merge-tool starten.

Tips & Tools
Vorsicht bei komplizierten Layouts. Ihr müsst das Ergebnis von „merge small text lines“ immer überprüfen, weil öfter auch Baselines zusammengefügt werden, die nicht zusammengehören (aus Zeilen mit anderer Reading Order).

Posted by Dirk Alvermann on

Zu kurze Textzeilen automatisch Entfernen

Release 1.12.0

Viele von euch kennen sicher das Tool „Remove small text regions“, das es seit gut einem Jahr bei Transkribus gibt. Jetzt kommt sein kleiner Bruder „Remove small text lines“. Endlich – ein Tool das viele Anwender sich lange gewünscht haben.

Bei der Citlab Advanced Layout Analyse (auch auf völlig „normalen“ Seiten) kommt es immer wieder vor, das Textregionen oder Baselines erkannt werden, wo wir sie nicht brauchen oder wollen.

Häufig werden in verzierten Initialen oder auch zwischen den einzelnen Zeilen „Mini-Baselines“ erkannt. Das HTR-Modell kann damit natürlich später bei der Texterkennung nichts anfangen und im Transkript stehen dann „leere“ Zeilen. Mit diesem Tool könnt ihr dies Baselines leicht und automatisch Löschen

Versucht es selbst einmal. Wir haben die besten Erfahrungen damit gemacht, wenn wir den Schwellenwert auf 0,05 einstellen.

Posted by Anna Brandt on

Transkribieren ohne Layoutanalyse?

Release 1.10.1

Wir haben in vorherigen Posts immer wieder betont wie wichtig die LA ist. Ohne sie hat ein HTR-Modell, und mag es noch so gut sein, keine Chance einen Text vernünftig zu transkribieren. Die Schritte von automatischer LA (oder einem P2PaLA-Model) und HTR löst man normalerweise getrennt voneinander aus. Jetzt ist uns aufgefallen, dass wenn ein HTR-Modell über eine komplett neue bzw. unbearbeitete Seite läuft, das Programm selbstständig eine LA ausführt.

Diese LA läuft mit den Default-Einstellungen von CITLab-Advanced LA. Dies bedeutet bei den reinen Seiten weniger Linien zu mergen und es werden zum Teil mehr als eine Textregion erkannt.

Es bedeutet jedoch auch, dass nur horizontale Schrift erkannt wird. Dasselbe Problem war bei uns auch bei unseren P2PaLA-Modellen aufgefallen. Alles was schräg steht oder gar vertikal kann so nicht erkannt werden. Dafür muss die LA manuell ausgelöst werden, mit der Einstellung ‚Text Orientation‘ auf ‚Heterogeneous‘.

Die HTR Ergebnisse sind bei dieser Methode interessanterweise besser als bei einer HTR die über eine korrigierte Layoutanalyse gelaufen ist. Wir haben dazu an bei einigen Seiten die CER ausgerechnet.

Damit ist diese Methode eine sehr gute Alternative, vor allem bei Seiten mit unkompliziertem Layout. Man spart Zeit, da man nur einen Vorgang auslösen muss und hat am Ende ein besseres Ergebnis.

Posted by Anna Brandt on

Tools im Layout-Reiter

Release 1.10.

Der Layout-Reiter hat zwei weitere Tools, auf die wir in unserem letzten Post noch nicht eingegangen sind. Sie sind vor allem bei der Layoutkorrektur sehr nützlich und ersparen lästige Kleinarbeit.

Das erste ist dazu da, um die Reading Order zu korrigieren. Wenn eine oder mehrere Textregions ausgewählt sind, werden durch dieses Tool Baselines („children of the selected element“) automatisch nach ihrer Position im Koordinatensystem der Seite geordnet. Also Baseline 1 beginnt links oben und von da weiterzählend bis rechts unten. In dem unten stehenden Beispiel wurde eine TR in mehrere zerschnitten, dabei ist aber die RO der Marginalien durcheinander gekommen. Das Tool erspart in so einem Fall die Arbeit, jede BL einzeln umbenennen zu müssen.

Das zweite Tool („assign child shapes“) hilft die BL der richtigen TR zuzuordnen. Dies kann nach dem Schneiden von Textregionen oder auch bei Baselines, die sich durch mehrere TRs ziehen, notwendig werden. Die BLs müssen dann einzeln im Layout-Reiter markiert und dort in die richtige TR geschoben werden. Alternativ markiert man die TR, in die die BL gehören und startet das Tool. Die Reading Order sollte anschließend noch einmal überprüft werden.

Posted by Anna Brandt on

P2PaLA – line detection und HTR

Release 1.9.1

Wie bereits in unserem vorherigen Post erwähnt, ist uns im Laufe unseres Projekts aufgefallen, dass die CITLabAdvanced-LA das Layout in unserem Material nicht optimal erkennt. Das geschieht nicht nur auf den optisch ’schlimmen‘ Seiten mit mixed Layouts, sondern auch bei einfachen Layouts; auf Seiten, die nur ein Textfeld benötigen, keine Notizen am Rand, großartige Streichungen im Text oder ähnliches aufweisen. Hier erkennt die automatische LA die TRs richtig, die Baselines sind jedoch meistens fehlerhaft.

Das ist nicht nur für die spätere Anzeige des Volltextes schlecht, die dadurch zum Teil verwirrend oder für den Leser unverständlich wird. Eine unzureichende LA beeinflusst auch das Ergebnis der HTR. Egal wie gut euer HTR-Modell auch ist: wenn die LA nicht eine adäquate Qualität bietet, ist das ein Problem.

Da die HTR nicht die einzelnen Zeichen liest, sondern zeilenbasiert arbeitet und Muster erkennen soll, kommen bei Zeilen, deren Anfang oder Ende von der line detection nicht richtig erkannt wurden (in denen also Buchstaben oder Wörter nicht von der LA erkannt wurden) oft falsche Ergebnisse heraus. Das hat zum Teil dramatische Auswirkungen auf die Accuracy Rate einer Seite oder eines ganzen Dokuments, wie unser Beispiel zeigt.


1587, page 41

Aus diesem Grund haben wir ein P2PaLA-Modell trainiert, welches auch BL erkennt. Das war sehr hilfreich. Es lassen sich für diese Modelle keine automatischen Statistiken wie für die CER errechnen, aber von der Ansicht her scheint es auf ‚reinen‘ Seiten fast fehlerfrei zu arbeiten. Außerdem ist der Schritt des Postprocessings in vielen Fällen nicht mehr nötig.

Das Trainigsmaterial wird ähnlich erstellt wie bei Modellen die nur TRs erkennen sollen. Man kann auch das dort verwendet Material quasi erweitern und erneut nutzen. Die einzelnen Baselines müssen für die Strukturanalyse nicht manuell getaggt werden, auch wenn das Modell es später tut, um sie den getaggten TRs zuzuordnen. Wir haben mit Unterstützung des Transkribus Teams und einem Trainingsmaterial von 2500 Seiten ein Strukturmodell trainieren können, das wir heute anstelle der Standard LA einsetzen.

Posted by Anna Brandt on

P2PaLA – Postprocessing

Release 1.9.1

Gerade am Anfang der Entwicklung eines Strukturmodells kam es bei uns vor, dass das Modell einfach jede Unregelmäßigkeit im Layout als eigene TR erkennen wollte. Das führt zu übermäßig – und überflüssig – vielen Textregions. Viele dieser TRs waren außerdem extrem klein.

Je mehr Trainingsmaterial man investiert, desto geringer wird dieses Problem. Bei uns verschwanden diese Mini-TRs, die überall auf der Seite zu finden waren, nachdem wir unser Modell mit etwa 1000 Seiten trainiert hatten. Bis dahin stören sie aber, denn sie alle von Hand zu entfernen ist mühsam.

Um diese Arbeit zu vermindern, habt ihr zwei Möglichkeiten. Einmal könnt ihr beim Start der P2PaLA schon festlegen, wie groß die kleinste TR sein darf. Dafür müsst ihr den entsprechenden Wert im „P2PaLA structure analysis tool“ vor dem Start des Jobs auswählen („Min area“).

Sollte diese Möglichkeit nicht den gewünschten Erfolg bringen, gibt es auf der linken Toolbar unter dem Punkt „other segmentation tools“ die Option „remove small textregions“. In dem geöffneten Fenster kann man die Seiten, auf denen der Filter laufen soll, einstellen und auch die Größe der zu entfernenden TRs. Die Größe wird hier in „Prozent des bestehenden Images“ gerechnet. Und hier lässt sich der Wert auch feiner kalibrieren als bei der oben genannten Möglichkeit. Wenn das Material, wie in unserem Fall, oftmals kleine Notizen oder auch nur einzelne Wörter in eigenen Textregions aufweist, dann sollte immer der kleinste oder zweitkleinste Wert gewählt werden. Wir verwenden in der Regel eine „Threshold percentage“ von 0,005.

Selbst mit einem guten Strukturmodell kann es immer noch möglich sein, dass einzelne TRs manuell verschmolzen, geteilt oder entfernt werden müssen – aber in einem deutlich geringeren Maße, als das bei der Standard LA notwendig wäre.

Tipps & Tools
Wichtig: Wenn man sicher sein will, dass man nicht zu viele TRs beseitigt, kann man mit einem „dry run“ starten. Dann wird zunächst die Anzahl der potentiell zu entfernenden TRs aufgelistet. Sobald man den Haken aus dem Kästchen entfernt, werden die betroffenen TRs beim Filtern unmittelbar gelöscht.

Posted by Anna Brandt on

P2PaLA – Training für Textregions

Release 1.9.1

An einer anderen Stelle dieses Blogs findet ihr Hinweise und Tipps zum Strukturtagging. Diese Art des Taggings kann für vieles gut sein – hier soll es um seinen Nutzen für eine verbesserte Layout Analyse gehen. Denn das Strukturtagging ist ein wichtiger Teil beim Training P2PaLA-Modelle.

Bei unseren Mixed Layouts musste die Standard LA einfach versagen. Für eine manuelle Erstellung des Layouts war das Material zu umfangreich. Also entschieden wir uns, es mit der P2PaLA zu versuchen. Dazu haben wir Trainingsmaterial erstellt, für das wir möglichst typische ’schwierige‘ Seiten aus unserem Material ausgewählt haben. Das waren Seiten, die neben dem eigentlichen Haupttext außerdem noch Randbemerkungen, Nachsätze und ähnliches enthielten.

 


coll: UAG Strukturtagging, doc. UAG 1618-1, image 12

Beim Trainingsmaterial sind nur die richtig gezogenen und getaggten Textregions wichtig. Line detection oder HTR interessieren an diesem Punkt noch nicht. Es können also auch bereits vollständig bearbeitete Seiten ins Training aufgenommen werden. Wenn man neue Seiten nimmt, auf denen nur die TR gezogen und getaggt werden muss, geht es allerdings schneller. So können in einer Stunde schon mal achtzig bis hundert Seiten für ein Training vorbereitet werden. 

Während wir bei unserem ersten Modell sieben unterschiedliche Strukturtypen getaggt hatten, haben wir die Zahl später auf fünf reduziert. Eine zu starke Differenzierung der Strukturtypen wirkt sich nach unserer Erfahrung eher negativ auf das Training aus.

Natürlich hängt der Erfolg des Trainings auch von der Menge des Trainingsmaterials ab, das man investiert. Nach unseren Erfahrungen (und bezogen auf unser Material) kann man mit 200 Seiten einen guten Anfang machen, mit 600 Seiten erhält man ein Modell mit dem man schon arbeiten kann, ab 2000 Seiten ist es sehr zuverlässig.

Tipps & Tools
Wenn man das Material für ein Strukturtraining erstellt ist es anfangs schwierig sich bewusst zu machen, dass es hier nicht um Inhalte geht. Das heißt egal welcher Inhalt dort steht, die TR in der Mitte ist immer der Paragraph. Auch wenn in der Mitte nur eine Notiz steht und das Konzept darunter viel länger ist und inhaltlich viel bedeutender. Nur so können im Training wirklich die nötigen Muster erkannt werden.

Posted by Dirk Alvermann on

P2PaLA vs. Standard LA

Release 1.9.1

Im vorigen Post haben wir beschrieben, dass – wenn die Layouts der Dokumente sehr anspruchsvoll sind – die Standard LA in Transkribus nicht immer befriedigende Ergebnisse liefert. Für ein perfektes HTR-Ergebnis braucht man aber eine perfekte LA.

Vor allem in den Dokumenten des 16. und frühen 17. Jahrhunderts konnte die CITlab Advanced LA uns nicht überzeugen. Wir hatten von Anfang an nicht erwartet, dass die Standard LA die anspruchsvolleren Layouts (Textregionen) differenziert erkennt. Es war aber die line detection, die am Ende unseren Ansprüchen bei diesen Dokumenten nicht mehr genügen konnte.

Ein Beispiel dafür, wie (im schlimmsten Fall) die line detection der Standard LA auf unserem Material arbeitete, seht ihr hier:


1587, page 41

Dies kann ein Einzelfall sein. Wenn man aber große Mengen von Dokumenten in Transkribus verarbeitet, können solche Fälle häufiger auftreten. Um das Problem richtig bewerten zu können, haben wir daher an zwei Konvoluten unseres Materials eine repräsentative Fehlerstatistik aufgenommen. Es zeigt sich, dass die Standard LA hier mit durchschnittlich 12 Fehlern in der line detection pro Seite arbeitete (siehe Grafik unten, 1598). Das hat natürlich unerwünschte Auswirkungen auf das HTR-Ergebnis, die wir im nächsten Post näher beschreiben.

Posted by Dirk Alvermann on

P2PaLA oder Strukturtraining

Release 1.9.1

Die Page-to-Page-Layoutanalyse (P2PaLA) ist eine Form der Layoutanalyse für die, ähnlich wie bei der HTR, individuelle Modelle trainiert werden können. Diese Modelle können trainiert werden, sodass sie entweder nur Textregionen erkennen oder Textregionen und Baselines – sie erfüllen also dieselben Funktionen, die auch von der Standard Layoutanalyse (CITlab Advanced) ausgeführt werden. Die P2PaLA ist vor allem geeignet wenn ein Dokument viele Seiten mit mixed Layout aufweist. Die Standard Layoutanalyse erkennt in solchen Fällen meist nur eine TR – und das kann im Text zu Problemen bei der Reading Order führen.

Mit Hilfe eines Strukturtrainings kann die Layoutanalyse lernen, wo in etwa oder auch wie viele TRs sie erkennen soll.

Die CITlab Advanced LA hatte bei unserem Material häufig Probleme Textregionen ausreichend differentziert zu erkennen. Daher haben wir in unserem Projekt früh mit der P2PaLA experimentriert. Zunächst probierten wir Strukturmodelle aus, die ausschließlich Textregionen setzten (Haupttext, Marginalien, Fußnoten etc.). In den so erzeugten TRs konnte dann die gewöhnliche Line detection durchgeführt werden. Aber auch hier waren die Ergebnisse für uns nicht immer zufriedenstellend.

Die BLs waren oft zu kurz (am Zeilenanfang oder Zeilenende) oder vielfach zerrissen – auch bei Seiten mit einfachem Layout. Deshalb haben wir auf Grundlage unseres bereits funktionierenden P2PaLA-Modells ein weiteres, mit zusätzlicher Erkennung der BLs, trainiert. Unser neuestes Modell erkennt mittlerweile alle ‚einfachen‘ Seiten fast fehlerlos. Bei Seiten mit sehr differenzierten Layouts müssen die Ergebnisse immer noch korrigiert werden, allerdings mit deutlich geringerem Aufwand als zuvor.